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Figure 1: Safe and trustworthy autonomy requires an
advanced toolbox that combines theory, computation,
and system validation.

Recent decades have witnessed a surging interest in deploying
robots and autonomous systems to address grand societal challenges
in transportation, energy, healthcare, agriculture, manufacturing,
and space exploration, to name a few. As more robots enter our so-
ciety and some of them start operating in close proximity to humans
and assets (e.g., in safety-critical applications such as autonomous
driving, or high-integrity applications such as space robotics), a key
question that the general public will ask before accepting robotics
technology is: are robots safe and can they be trusted to perform
what they are designed to do? Unfortunately, the current answer to
this question seems to be negative. For example, a recent survey
showed that “nearly 3 in 4 Americans say autonomous vehicle tech-
nology is not ready for primetime” [15]. Moreover, it is not rare to
see reports about self-driving vehicles making fatal mistakes [10].

My research aims to enable safe and trustworthy autonomy for a broad range of high-integrity
applications, by designing tractable and provably correct algorithms that enjoy rigorous performance
guarantees, developing fast implementations, and validating them on real robotic systems (cf. Fig. 1).

My past research focused on robot (visual) perception and has led to the development of the first
certifiable outlier-robust geometric perception toolbox (Section 2). A modern perception pipeline typically
consists of a (deep) feature matching front-end and a geometric estimation back-end, where the back-end often solves
a difficult mathematical optimization problem to estimate relevant geometric models (e.g., Fig. 2 shows an example
of estimating the 3D orientation and location of an incoming vehicle given a 2D image observation). In stark contrast
with traditional geometric estimation algorithms that are fast but can fail without notice, my work has established the
foundations of certifiable algorithms that can certify success and detect failure: they return an optimal estimate with
a certificate of optimality for the majority of problems, but declare failure and provide a measure of suboptimality
on (rare) worst-case instances [21, 3]. I built this new paradigm for the geometric estimation back-end by leveraging
a combination of rigorous theory (e.g., graph theory, robust estimation, semidefinite relaxation) and principled
scientific computing (e.g., large-scale convex optimization solvers, fast implementations), and demonstrated the
resulting algorithms on safety-critical applications such as self-driving and space robotics. Algorithms in this toolbox
also have broader impacts on robust estimation (e.g., by providing a general methodology for optimal estimation
in the presence of outliers) and mathematical optimization (e.g., by showing how to solve large-scale degenerate
semidefinite relaxations). I was honored to be selected as an RSS Pioneer, and also to talk about the impact of
certifiable algorithms on safe autonomous driving on MIT News Spotlight [12].

An autonomous system, however, interweaves different modules (e.g., perception, control, planning) and ensuring
system-level safety requires much more than optimality of the geometric estimation back-end. Therefore, my
future research aims to expand the trustworthiness and performance guarantees beyond geometric
estimation (Section 3). First, I plan to guarantee safety of the entire visual perception pipeline (cf. Fig. 2), which
not only includes the geometric estimation back-end, but also a learning-based front-end. This line of research will
develop the theory and practice necessary for us to warrant that the solutions certified as optimal by the back-end
correspond to a correct and safe understanding of the world, e.g., in Fig. 2 to guarantee that the optimal pose
is close to the groundtruth pose of the incoming vehicle. Second, I plan to integrate safe perception and safe
control/planning in the context of active perception [2]. Although it is common in robotics to treat perception as
an upstream task before planning and control, humans often move to better see, making perception an active and
adaptive process. I believe designing a feedback mechanism between perception and action under a proper theoretical
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Figure 2: Example of a safe and trustworthy robot perception pipeline for vehicle pose estimation. Given a 2D image and a 3D model of
an incoming vehicle, the pipeline first learns a neural network to detect and match semantic keypoints (such as mirrors and wheels) from
2D to 3D (typically referred to as the feature matching front-end), and then seeks the best 3D rotation and translation (i.e., pose) to align
the 3D model to the detected keypoints by solving a mathematical optimization (typically referred to as the geometric estimation back-
end). Safety of the entire pipeline can be guaranteed by computing an optimality certificate from the back-end and verifying geometric
conditions of the matches outputted by the front-end (what we call an estimation contract). My past research developed the first toolbox
for computing certifiably optimal solutions for the back-end (Section 2, right-hand side in the figure), while my future research aims to
investigate the design and verification of the estimation contracts (Section 3, left-hand side in the figure).

framework, while offering safety guarantees, is a stepping stone towards human-level intelligence. My past research
equipped the perception module with certifiability, and provides a promising component for the feedback mechanism.

While I am deeply interested in contributing to the theoretical and computational foundations of robotics, I also
recognize that dealing with real robots in real-world complex environments is one of the most important and intriguing
aspects of robotics research, especially in the context of safe and trustworthy autonomous systems. Therefore,
my future research will place significant emphasis on validating and improving the theory and algorithms on real
platforms such as ground vehicles, manipulators, and drones. Real robots provide valuable datasets for us to refine
the theoretical assumptions of our algorithms and to design data-driven methods to better predict the uncertainty
of the real world. I hope the seamless combination of theory, computation, and system validation will unveil a future
of safe and intelligent robots to the public.

2 Past Research: Certifiable Outlier-Robust Geometric Perception
Perception, at the front line of an autonomous system, consumes sensory information and builds an internal

representation of the 3D environment. As mentioned in Section 1, a perception pipeline typically includes a front-
end that extracts and matches relevant features from raw sensor data, and a back-end that estimates a geometric
model given the feature matches, by solving a mathematical optimization (cf. Fig. 2). In practice, due to various
sources of imperfections and uncertainties (e.g., sensor noise, occlusions, misdetections, etc.), a large amount of
outliers –measurements that tell no or little information about the underlying geometric models– can be generated
by the front-end (e.g., wrong matches shown by red lines in Fig. 2). Therefore, designing an outlier-robust estimation
back-end that can tolerate a large number of outliers is of paramount importance for safe and trustworthy autonomy.

Unfortunately, from a theoretical standpoint, safe perception is fundamentally intractable because performing
robust estimation by discerning inliers (i.e., the correct measurements such as green lines in Fig. 2) from outliers,
is known to be NP-hard and inapproximable [1]. Consequently, existing outlier-robust estimation algorithms are
divided into fast heuristics (e.g., RANSAC [8]) that run in real time but offer little performance guarantees, and global
solvers (e.g., branch-and-bound [9]) that guarantee optimality but run in worst-case exponential time.

My past research has led to the development of the certifiable perception toolbox, containing the
first set of tractable outlier-robust geometric estimation algorithms with provable guarantees. This
toolbox contains two general-purpose algorithms: a fast and robust estimator, and a trustworthy certifier.

Estimator: outlier-robust estimation with graduated non-convexity. Although outlier-robust estimation
is theoretically intractable, I have shown that it is possible to design an estimator to solve, in polynomial time, a
majority of the problem instances to global optimality. In [16] (ICRA 2020 best paper in robot vision, RAL 2020
best paper honorable mention), I developed a graduated non-convexity (GNC) scheme for robust estimation that can
tolerate up to 70-80% random outliers in a broad range of geometric perception problems including point cloud and
mesh registration, shape alignment, category-level object perception from 2D/3D landmarks [19, 13], and pose graph
optimization in simultaneous localization and mapping (SLAM). Notably, in [13] (RSS 2021 best paper finalist),
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GNC, together with an imperfect keypoint detector, can accurately estimate the pose and shape of a wide range of
vehicles in self-driving applications. Compared to existing robust estimation techniques that are either randomized
or whose performance largely depends on a good initialization, GNC is both deterministic and initialization-free,
which significantly increases the algorithmic repeatability and reliability, and decreases the amount of human design
efforts (e.g., parameter tuning). Recently, my collaborators and I have further made GNC almost parameter-free
by leveraging insights from statistics [1], which makes GNC a plug-and-play algorithm. GNC is implemented in both
Matlab’s navigation toolbox [11] and the popular GTSAM library for SLAM. To boost the robustness of GNC against
an extreme number of random outliers (e.g., having 95% random outliers is common in point cloud registration),
my collaborators and I have designed a general graph-theoretic pruner, called ROBIN [17, 14], that can filter out gross
random outliers before executing GNC. Although ROBIN runs in worst-case exponential time, we leveraged parallel
computing so that ROBIN exhibits real-time performance in practical applications. Combining ROBIN and GNC has led
to TEASER [24], a point cloud registration library that can tolerate over 99% random outliers and runs in milliseconds.
The open-source implementation of TEASER has over 800 stars on Github, and it is becoming a go-to approach for
3D rigid registration in robotics and computer vision.

Certifier: global optimality certification via semidefinite relaxation. GNC can solve common outlier-
robust estimation to global optimality, but it comes with no optimality guarantees and it can fail without notice.
Therefore, I proposed the notion of a “certifier” that aims to certify the success or detect (and correct) the failure of
GNC. Designing an efficient certifier is grounded in rigorous theory and computation. First, I brought the machinery
of polynomial optimization (POP) into robot perception and showed that many fundamental outlier-robust percep-
tion problems can be reformulated as POPs [21]. Second, although POPs are NP-hard in general, I, for the first
time, empirically demonstrated that POPs arising from common geometric estimation problems are polynomial-time
solvable, by designing sparse and exact convex semidefinite programming (SDP) relaxations based on Lasserre’s
theory of moment and sum of squares relaxations [21, 18, 20]. Solving the convex SDP can not only compute an
optimal solution to the original POP, but also provide a certificate of global optimality. Third, in collaboration
with world-renowned experts in convex optimization, I developed an SDP solver called STRIDE that solves exact
semidefinite relaxations with unprecedented scalability and accuracy [23]. STRIDE is capable of certifying success or
correcting failure of GNC in real robotic applications such as 3D reconstruction, satellite pose estimation, and vehicle
pose and shape estimation [21]. The impact of STRIDE also goes beyond perception. POP is a universal modeling
language for decision-making problems subject to complex constraints (e.g., in robotic motion planning [6]), and
STRIDE provides a general tool to solve them with optimality guarantees. Furthermore, solving large-scale degenerate
SDPs has been a long-lasting challenge in mathematical optimization, and STRIDE is the first scalable algorithm that
can solve large-scale exact SDP relaxations of POPs to high accuracy [23].

3 Future Research: Towards System-level Safe Autonomy
My past research has focused on designing a certifiably optimal geometric estimation back-end for visual perception

(cf. Fig. 2). My future research aims to start from the certifiable perception back-end, and reach my long-term vision
of system-level safe and trustworthy autonomy, by building an advanced toolbox combining theory, computation,
and system validation (cf. Fig. 1). In the following, I detail two important steps that are crucial towards this goal.

Safe perception by integrating front-end and back-end (cf. Fig. 2). As shown in Fig. 2, a full perception
pipeline contains not only geometric estimation, but also feature learning and matching. Therefore, optimality of the
geometric estimation back-end may be vacuous without appropriate assumptions on the feature matching front-end
(e.g., if a robot is trying to localize an incoming vehicle, but all its predicted keypoints lie on a pedestrian, then the
optimal pose estimation will not match the actual vehicle pose). To bridge the gap between optimality and safety, I
plan to integrate the front-end and the back-end by investigating three topics. First, I intend to establish “estimation
contracts”, which are problem-specific conditions on the input data ( e.g., feature matches produced by the front-end)
that ensure optimal solutions correspond to a correct understanding of the environment. For example, in [24], my
collaborators and I have developed such a contract for point cloud registration. I plan to delve deeper into the
geometric foundations of robot perception to construct estimation contracts for other problems (e.g., category-level
perception). Second, I aim to develop feature learning methods that are tailored to geometric estimation and its
estimation contract. Existing feature matching front-ends are typically trained separately from the estimation back-
end and hence have two drawbacks. On one hand, the training process requires a large amount of data with labeled
geometric models that may be expensive to acquire. On the other, it is challenging to ensure that the separately
learned features will promote the correct estimation of the optimization back-end. Therefore, I propose to model
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the joint task of (supervised or unsupervised) feature learning and geometric estimation as a bilevel programming
problem [4] and design efficient algorithms to solve it. In a preliminary work [22], I designed a general self-supervised
perception framework that does not require labeled geometric models and achieves similar performance as compared
to supervised oracles. Future work will extend [22] in seeking more efficient computational algorithms for solving the
bilevel programming problem, and designing suitable loss functions to promote estimation contracts. Third, I plan
to verify the correctness of feature matching (in satisfying the estimation contract) by quantifying the uncertainty of
neural networks. Even though the learned front-end can output matches satisfying the estimation contract for the
entire training dataset, real-world noise can perturb the output in unexpected ways. Consequently, it is important to
bound the noisy perturbations such that estimation contract is satisfied during deployment. To this end, a promising
direction is to leverage recent progress in neural network Lipschitz constant estimation [7]. Notably, a major technical
tool for estimating the Lipschitz constant of a neural network is semidefinite programming, for which I have developed
much expertise from my past research.

Safe autonomy via integrated perception and action.

(a) (b) (c)

Figure 3: Safe active perception with a target-tracking ex-
ample. (a) A blue car (i.e., the robot) is tracking a yellow
car with certified correctness. (b) A red car changes lane and
occludes the yellow car, increasing the uncertainty in the per-
ception system of the blue car. (c) By switching lane, while
respecting safety constraints, the blue car obtains a certified
observation of the yellow car.

While most existing research treat perception as a passive
task (i.e., to understand the environment given sensor mea-
surements), perception is supposed to be active and adaptive,
where the robot needs to move and act to effectively place
the sensors, just as we humans constantly turn our heads and
change our position to gather desired information. Therefore,
my longer research vision is to enable a tight integration of
perception and action, particularly aiming at scenarios where
a passive perception alone would fail. Fig. 3 illustrates a
tracking example where the robot needs to actively integrate
perception and action. In Fig. 3(a), the blue car (say our
robot) is tracking the yellow car (the target), e.g., by esti-
mating the pose of the yellow car. Since the yellow car is
observable, the perception system can obtain a confident and
safe observation. In Fig. 3(b), however, a red car changes lane
and occludes the yellow car from the blue car. Without proper
action, the blue car would lose track of the yellow car (or wait
until the red car moves out of the way). However, if the blue car also switches lane (Fig. 3(c)), then it can actively
re-observe the yellow car and regain confidence. Meanwhile, the lane-changing action must respect safety constraints
–the blue car can only switch to the right lane because the left lane is occupied by another green car– and this is
where safe control and planning comes into play [5]. I believe a two-way feedback mechanism is necessary between
perception and action, such that the failure of one system can call for help from the other. I plan to investigate
proper mathematical formulations for such problems and design efficient, general-purpose, and certifiable algorithms
with applications on real robotic platforms. Because safe control and planning becomes a critical component of
safe active perception, I will also seek collaborations with control and planning researchers to tackle this challenge
together, especially on designing safe control and planning policies under uncertain or misleading state estimations.

Potential funding opportunities. My past research on certifiable perception has been funded by ARL, ONR,
NSF, and Google. Given the wide interest in safe and trustworthy autonomy and its profound impact on society,
I am interested in applying for both government and industrial funding, including DARPA (e.g., DARPA Young
Faculty Award is seeking applications for Integrated Perception Learning and Control for Autonomous Robots), NSF,
ARL, ONR, Google, Amazon, etc. I also plan to establish a broad range of collaborations with roboticists, control
and machine learning researchers, and applied mathematicians.
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