Notation

We will use the following standard notation throughout this book.

Basics

\(\mathbb{R}^{}\) real numbers
\(\mathbb{R}^{}_{+}\) nonnegative real
\(\mathbb{R}^{}_{++}\) positive real
\(\mathbb{Z}\) integers
\(\mathbb{N}\) nonnegative integers
\(\mathbb{N}_{+}\) positive integers
\(\mathbb{R}^{n}\) \(n\)-D column vector
\(\mathbb{R}^{n}_{+}\) nonnegative orthant
\(\mathbb{R}^{n}_{++}\) positive orthant
\(e_i\) standard basic vector
\(\Delta_n := \{x \in \mathbb{R}^n_{+} \mid \sum x_i = 1 \}\) standard simplex

Matrices

\(\mathbb{R}^{m \times n}\) \(m \times n\) real matrices
\(\mathbb{S}^{n}\) \(n\times n\) symmetric matrices
\(\mathbb{S}^{n}_{+}\) \(n\times n\) positive semidefinite matrices
\(\mathbb{S}^{n}_{++}\) \(n\times n\) positive definite matrices
\(\langle A, B \rangle\) or \(\bullet\) inner product in \(\mathbb{R}^{m \times n}\)
\(\mathrm{tr}(A)\) trace of \(A \in \mathbb{R}^{n \times n}\)
\(A^\top\) matrix transpose
\(\det(A)\) matrix determinant
\(\mathrm{rank}(A)\) rank of a matrix
\(\mathrm{diag}(A)\) diagonal of a matrix \(A\) as a vector
\(\mathrm{Diag}(a)\) turning a vector into a diagonal matrix
\(\mathrm{BlkDiag}(A,B,\dots)\) block diagonal matrix with blocks \(A,B,\dots\)
\(\succeq 0\) and \(\preceq 0\) positive / negative semidefinite
\(\succ 0\) and \(\prec 0\) positive / negative definite
\(\lambda_{\max}\) and \(\lambda_{\min}\) maximum / minimum eigenvalue
\(\sigma_{\max}\) and \(\sigma_{\min}\) maximum / minimum singular value
\(\mathrm{vec}(A)\) vectorization of \(A \in \mathbb{R}^{m \times n}\)
\(\mathrm{svec}(A)\) symmetric vectorization of \(A \in \mathbb{S}^{n}\)
\(\Vert A \Vert_\mathrm{F}\) Frobenius norm
\(\mathrm{Range}(A)\) span of the column vectors
\(\mathrm{ker}(A)\) right null space

Geometry

\(\Vert a \Vert_{p}\) \(p\)-norm
\(\Vert a \Vert\) \(2\)-norm
\(B(o,r)\) ball with center \(o\) and radius \(r\)
\(\mathrm{aff}(S)\) affine hull of set \(S\)
\(\mathrm{conv}(S)\) convex hull of set \(S\)
\(\mathrm{cone}(S)\) conical hull of set \(S\)
\(\mathrm{int}(S)\) interior of set \(S\)
\(\mathrm{ri}(S)\) relative interior of set \(S\)
\(\partial S\) boundary of set \(S\)
\(P^\circ\) polar of convex body
\(P^{*}\) dual of set \(P\)
\(\mathrm{O}(d)\) orthogonal group of dimension \(d\)
\(\mathrm{SO}(d)\) special orthogonal group of dimension \(d\)
\(\mathcal{S}^{d-1}\) unit sphere in \(\mathbb{R}^{d}\)

Optimization

KKT Karush–Kuhn–Tucker
LP linear program
QP quadratic program
SOCP second-order cone program
SDP semidefinite program

Algebra

\(\mathbb{R}[x]\) polynomial ring in \(x\) with real coefficients
\(\deg\) degree of a monomial / polynomial
\(\mathbb{R}[x]_d\) polynomials in \(x\) of degree up to \(d\)
\([x]_d\) vector of monomials of degree up to \(d\)
\([\![x ]\!]_d\) vector of monomials of degree \(d\)